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; In this book a ncw method of investigating the
problem of shells of positive Gaussian curvature is
presented. The critical loads are determined for
various modes of loading.

The book is of interest to designers, scientific
workers, students, and Ph.D.candidates.




INTRODUCTION

This book investigates the stability of shells of positive Gaussian
curvature when subjected to various modes of loading. The method used
is based on the following two considerations;

1. The load supported by the shell at the moment of loss of stability is
stationary and, therefore, changes but little under a substantial bulging of
the shell.

2. The deformation of the shell under substantial bulging beyond the
neighborhood of the boundary of the bulging zone can be considered as a
geometric bending.

It follows from condition 2 that the energy of deformation of the shell at
the primary stage of postcritical deformation is concentrated, in the main,
along the boundary of the zone (zones) of bulging. In section 1 the following
formula for the energy of deformation, per unit length of boundary, is
derived

= 2Ev%ah

U= vra—w

Here, « is the angle between the plane of contact to the boundary of the
bulging zone, 7, and the planes tangent to the surface; p is the radius of
curvature of y; h, the change in shell deflection when passing across the
boundary into the zone of bulging; &, the thickness of the shell; E, the
modulus of elasticity; and v, Poisson's ratio. The establishment of this
formula is the basic result of this section, and is widely used in all further
deliberations.

In the same section a study is made of the problem of loss of stability
of a shallow shell rigidly fixed at the edge and subjected to uniform
external pressure. A formula for the value of the critical pressure at which
loss of stability occurs,

2E¥

P= VRa—wRR

is derived. Here, R, and R, denote the principal radii of curvature at the
center of bulging.

At the end of the section the problem of loss of stability of a shell sub-
jected to the pressure of a tightly drawn string is considered. The
following formula for the critical pull of the string, Q, is derived

- e (558 V.

where R, is the radius of normal curvature of the shell surface in the



direction of the string, and ¢ is a constant == 0,2, The question of loss of
stability of a shell supported by an elastic foundation is studied and a
formula for the critical stress is obtained.

In section 2 a study is made of the geometry of the primary stage of the
postcritical deformation of the shell. Starting with the assumption that
change of shape of the shell beyond the neighborhood of the bulging zone
boundary is small, we pass from finite bending to the infinitely small and
derive an explicit expression for the bending field. The study is confined
to the case when the zone of bulging is small, has an elliptic shape, and
is freely orientated with respect to the principal directions of the shell
surface. Results arrived at in this section find substantial application
later on.

The third section begins again with a study of the problem of critical
external pressure for shallow shells of positive Gaussian curvature and
a rigidly fixed edge. This study is different from that of section 1 in that
the deformations considered are gencral. Such an approach frees us of a
number of limitations which narrowed down the application range of the
results of section 1. The formula for the value of the critical pressure,
arrived at in this section, is identical with the previous result, namely

_ 2Ew
P VI a—WRR

Section 3 also includes a discussion of the question of internal and
external critical pressure for a shell of rotation of positive Gaussian curva-
ture. It is found that internal critical pressure for such a shell is given
by the formula

2F% 1
T3_(! — )RR, o?
2RyR:

P=|/

—1

where p is the radius of thc parallel along which the regions of bulging are
situated; all other quantities retain their previous meanings and are re-
lated to the centers of bulging. It is shown that the regions of bulging are
strongly elongated along the meridians of the surface.

The value of the external critical pressure for a convex shell of rotation
is given by the following formula:

_ 2EN . 1
P VIu—mRiR

Pt 1
Rk T

When applied to the case of a closed spherical shell, this formula gives
the following value for the critical pressure:

—-— 2
P V3a—vwR 3’

which equals %of the value obtained for a shallow shell. Loss of stability
is accompanied by the formation of flattened out dents along the equator.
Application of the general result to the case of shallow shells does not
contradict the corresponding formulas for shallow shells because of




smallness of the ratio ¢32R,R,. In addition, it agrees with known ex-
perimental facts according to which, in a number of cases, loss of stability
of a convex shell under external pressure is accompanied by the formation
of a system of bulging regions along the edge of the shell.

Section 3 also includes a study of loss of stability of shells of rotation
subjected to twist., For the value of the critical moment causing loss of
stability, the following formula is obtained:

o fmptEW
T V3I—- VYRR’

where p is the radius of the parallel along which bulging of the shell
takes place.

The fourth section studies postcritical deformations proper of a shell of
positive Gaussian curvature subjected to fwo modes of loading: a concentrated
load, and uniform external pressure. Thisproblemwasdiscussedpreviously
in /2/. The innovation here consists in the derivation of a more exact
expression for the shell deformation energy. Results arrived at are used
to study the influence of initial bending of the shell on the critical load. It
is shown that the value of the critical load for a shallow shell with edge
rigidly fixed and subjected to external pressure is decreased and is equal

to
1 1 1 3
= m— —_ — 182 —_
P 20VR;R:(R1+R) Va

where 2k is the initial deflection. This formula was derived under the
assumption of substantial initial deflection. In any case, it is necessary
to assume that 2x/% > 1.

A method of approach to the study of the stability problem of a three-
layer shell is presented in the supplement to this work. As an example,
the value of the critical pressure for a shallow shell of positive Gaussian
curvature is obtained:

w

2E% Gt (Ri + Ry)
[E— 2
P V3 —y)RRs + RiRy

where 3 is the thickness of the outer layers; ¢, the thickness of the inner
layer; E, the modulus of elasticity of the outer layers; and G, the shear
modulus of the filler.



§1. LOSS OF STABILITY OF A SHELL OF
POSITIVE GAUSSIAN CURVATURE WHEN
SUBJECTED TO EXTERNAL PRESSURE .

We showed in /1/ that our method for studying postcritical deformations
can be used to investigate stability problems, We also derived a formula
for the value of the upper critical load for a shallow spherical secgment
subjected to uniform external pressure. The same considerations were
taken into account for this derivation as were used in the study of post-
critical deformations, In this section this method will be applied to a
general study of shallow shells of positive Gaussian curvature. At first,
we shall confine ourselves to simple problems in order to apply this new
method to simple examples with well-known results,

1. Energy of elastic deformation of a
shell at the initial stage of bulging

We shall consider a shallow shell of positive Gaussian curvature, fixed
at its edges and subjected to external pressure. IFor a certain value of
DML G A LDOUL L WL DI WLLL LUDU 1LD DLALLLLY . LU YWD DULUWIL Ll L g,
study of postcritical deformation of a spherical shell after loss of stability,
that in the casc of a uniform load such a deformation must start by bulging
occurring throughout a certain region. The case when bulging begins to
spread out from some central point is excluded. All the above, taken in
conjunction with the fact that in the final phasc the deformation of the shell
under consideration must approximate to the state of mirror image bulging,
enables us to regard the shape of the shell at the starting phase of post-
critical deformation as being close enough to the state of double mirror
image bulging (Figure 1). It is assumed, of course, that the degree of
fixity of the shell edge at the support is rigid and that the bulging region
comprises a sizeable portion of the shell, thus enabling the rigidity of the
fixed edge to predetermine the above-mentioned shell deformation at
the final phase.

] e
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FIGURE 1. FIGURE 2.




In § 3 we shall examine a more general case of postcritical deformation
at the initial phase, relaxing the requirement regarding mode of edge support
and size of bulging region. However, as we shall see presently, this will
not alter the final value of the magnitude of critical pressure obtained in the
present problem. We shall therefore limit ourselves in the present section
to the above-mentioned simple deformation and will concentrate our atten-
tion on other questions related to the applicability of our method, e.g.,
the evaluation of shell deformation energy, which we will deal with presently.

Starting with our initial assumption regarding the character of post-
critical deformation of the shell surface we consider that the deformed
shape of the shell approximates well to its original shape within zone 4,
(Figure 2) and to the double mirror image bulging within zone 4,. The
transitive zone A, is considered narrow enough. Let 7 denote the assumed
curve separating zones A; and A4,, p, its radius of curvature, and a, the
angle between the plane of 1 and the planes tangent to the surface.

Using the procedure of Appendix II of /1/, where the value of the de-
formation energy of a spherical shell was derived, we obtain for the de-
formation energy U in the zone of substantial local bending of the shell (4,,),
and for unit length of 7, the expression

77 3E ¢ 3" | ut
U= i) (i +i)e

In the above expression v denotes the normal displacement of points of the
shell middle surface under deformation, and «, the displacement in the
tangent plane in a direction perpendicular to y. Integration between the
limits -e* e* is carried out along the assumed breadth of zone A4,. Ignoring
deformation of the middle surface in a direction perpendicular to y, we
arrive at the well-known expression relating the displacements u and v,

u‘—|—av’+%v"= 0.

Remarks. In the present discussion, as well as previously, when-
ever we speak of the energy of deformation in the zone of strong local
bending we consider, in addition to shell bending, the accompanying ex-
tension (contraction) of its middle surface. Of the two terms in the ex-
pression under the integral sign, the first accounts for the energy of
bending and the second for the energy of extension {contraction) of the
middle surface.

As in our previous studies, we replace the variables u, v, s by variables

u, v, s, where

- u - v’ -

u=$, V=", S=—,
32

T 12p%2

Ble

et

Omitting, for simplicity, the bars in these new variables, the expression
for U will take the form:

f (v'? + u?) ds.

—

E¥*/35%/3p—/s

U0=—2=72"%°
2. 124 (1—p2)



The limits of integration <" and —&" increase indefinitely in their
absolute value as pa/d increases. Therefore, upon limiting ourselves to
the case of such shells and deformations for which 3z is small, the limits
of integration can be changed to + «». Then

07— Y252,
2. 1284 (1 —p?Y

S (V% + u?)ds.
We shall always take the function (v)s to be symmetric and u(s) to be
antisymmetric. We can therefore integrate between the limits (0," «):

Eb‘]za5lip—’ll

127 (1 — ) ;S (v + u) ds.

U=

The above expression for the energy U is substantially a function of the
shape of the shell in the transitive zone A4,, which, in turn, is defined by
the functions u, v prescribing the deformation. As in previous studies we
shall evaluate the energy U by using the condition that it be a minimum
under a given general deformation. We characterize this deformation by
a deflection h with the region of arching and in the vicinity of the given
point of curve y at which energy U is considered. All this assumes a
definite meaning as the width of the transitive zone 4,, decreases indefinitely.
Under our present assumption regarding the character of postcritical de-
formation, & is a constant defined by the displacement of the zone of bulging.
In the more general study, to be undertaken later on, h varies along the
curve 7.

In terms of the initial variables v and s, h can be expressed as

h=—] _v'ds.

If we change to new variables and change the limits of integration &* and
—2* to + oo, we obtain

1
h=—]2-,—“l/§pa Svds.

Finally, by taking into account the expected symmetry of the function v(s),
we obtain

2  e—
h=— o VBPG(S vds.

Thus, the energy U, as well as the function u, v on which it depends,
are determined from the condition that the functivias

f(uﬂ + ut)ds

]

_ B‘/'za‘lap—‘lz
T 1Ml — )

[

be a minimum, given that

- mi‘/‘ Ve g. vds = h = const.
)




In addition to the above integral equation, the variable functions u, v must
satisfy the equation

1 i
u +U+—2—=0

and their values at infinity must be zero.

2, Solution of the variational problem for
the functional U

Let us examine the problem of the minimum value of the functional U.
We first transform the equation

el
-—2’:’”5 vds=h
124

using the relation
’ v?
wtovtg= 0.

If we integrate this equation between the limits —w and o and use the
fact that u(—w) =u() =0, we obtain

—-svds—jl—ds

Further, taking into account the symmetry of the function v(s), we obtain

—T‘.vds = %]v’ds.
0

[

It follows that the integral equation in v(s) can be presented in the form

}/bpa

P = const.

°<,3

Consequently, our variational problem consists of evaluating the minimum
of the functional

= Bl .
U= N - 2 (U T+ uﬂ
1270 (1 —p?)

under the following conditions:

VATE S‘v’ds = h = const.
0

u +U+—§-=0,
1(0) = u (o) = v(w0) =




Since we are only interested in the initial stage of postcritical deforma-
tion, we can omit the term ¢*2 in the relation
’ v?
u +uvi '2—= 0
thus obtaining the simplified form
u +ov=0.
If we substitute v everywhere instead of u' our problem reduces to

finding the minimum of the functional

_ Slagsla,— 1 [
O — Bt 2:§(u”’+u’) ds
[

12Y6 (1 —

where

2t

'/bpaé u'?ds = h = const

and the boundary conditions

u(0)=u(o)=0
are satisfied.
In accordance with the Euler-Lagrange method our variational problem
is reduced to the investigation of the unconditional extremum of the
functional

_ . Eb“/za'lzp“'ll " ]/bpa ,
W= bg{———m,,‘(l o (W4 u"™ 4 1oV 4 l} ds,

WILL L U A L3 OULLIC LU LAl

Assuming for the sake of brevity that

_ YA —eha
o= T

we may consider our problem as reduced to finding the extremum of the
functional

I = S (ud + u™ —ou'?) ds,
1]

which differs from W by a constant factor.
The Euler-Lagrange equation for the functional I is

uV4+u+ou" =0,
and its general solution is given by
u(s) = Y creors
where o, denote the roots of the characteristic equation:

w4+ 1 4 ot =0,




Itis evident thatin the complexplane z=x- iy these roots are placed sym-
metrically with respect to the origin and the x-axis and consequently their
absolute value equals unity.

In order to satisfy the boundary condition u(w)=0, there must be two
roots amongst the roots o, with negative real parts. If we denote these
two roots by o; and «¢,, the solution of our variational problem is given
by a function u(s) of the type

U = ¢, e*5 1 c,e”s,

Further, in order that the second boundary condition u(0) = 0 be satisfied,
we must have ¢g =—¢,=c¢. In such a case we have the following expression
for u(s):

u = c{e"*— ),

Substituting the above function into the expression for the functional U
and the relevant integral connection, we obtain

s — — (9 4 o1 2o
OS“"’S' o3+ 53—,

ds = —a( ik 4+ b — 2
§uds_ ¢ (2w1+2m' wy 4wy’

o . o] o} 2«)}(»})
[ s = —e (7+?—m :
0
The roots o, and o, are complex conjugate and have absolute values of

unity. We can therefore put
o, = e?, w, =¢®

Substituting these values into our integral expressions we obtain

S u'tds = (3

0

f(u! +um)ds = ¢t
0

sin?§
cosd ?

sin? §
cos &

(2 + 4 cos?d),
and hence

5/2,502,—/2
B (2 4 4 costh),
1277+ (1 —r_)

P }/lbpac’ sin’i).
12/« 7 cos d

U=

It follows that

U= _ B 5 2+ 4costo)
4

ViZ(Q—p
The minimum value of U, with A =const, is obtained for § = —;— and thus

we are led to the following final expression for the energy of deformation

2E¥%a%h

U=—:;—-—
ViZ(l—php*

This expression for the deformation energy of the shell in the zone of
substantial local bending is very important, We shall use it in our study



of other, more general, cases of deformations, which are not reduceable
to that of double mirror image bulging. In fact, each time that bulging of the
shell resulting from loss of stability is effected throughout zone A4,, bounded
by curve 7, we shall calculate the deformation energy value in regions of
considerable local bending in the vicinity of y, by the same formula

i 2E3%a%

V=Tma—we

In such a general case a will denote the angle between the plane of contact
of the 1 curve and the tangent planes of the surface; p, the radius of
curvature of the curve; and #, the change in shell deflection across the
boundary of the bulging zone.

In our previous investigations of postcritical deformations, we evaluated
the energy of deformation by considering both the energy in the zone of
considerable local bending and energy of bending along the original shell
surface. In our present study of the initial stage of postcritical deformation
it may seem advisable to proceed in a similar manner. However, we soon
see that in our present case the deformation energy along the original shell
surface is negligible and can be neglected. For the special case of shell
deformation which can be approximated by double mirror image bulging this
is quite evident, since there is no change in curvature under deformation in
each one of the zones A, and A,. Let us investigate a general case.

Firstly, the total deformation energy in the zone of strong local bending
is of the order of magnitude

E¥%a%h.

This follows from the fact that the energy per unit length of y is of the
order of magnitude E¥%u2h/; and the length ¢ is of the order p. Furthermore,
the change in curvature of the middle surface inside the zone of bulging,
follows, therefore, that the er;ergy of deformation inside the bulging zone
is of the order of magnitude

o

It is quite natural to assume that the energy of bending on the remaining
shell surface is of the same order of magnitude.

Thus, at the initial stage of postcritical deformation the order of
magnitude of energy within the zone of considerable local bending is

Et%*h,

and that of deformation energy along the remaining surface is

Evps
[

Taking into account that a is of the order of magnitude p/R (where R is
the normal curvature of the shell surface), we see that our problem is
reduced to comparing the order of magnitude of two quantities

Ebhpt Wh
R. N E F .




Taking into account the usual relationships between the various parameters,

it is evident that the second quantity is of a smaller order of magnitude.
The above discussion leads us to the conclusion that when considering

the energy of postcritical deformation at its initial stage, it is sufficient

to take into account the energy in the zone of strong local bending only.

aQ

3. Evaluation of the upper critical load
for a shell of positive Gaussian curvature
subjected to a uniform external pressure

We define a load p acting on a shell to be a critical load if there exists
the possibility that under the action of such a load the shell, in addition to
its basic deflected shape of elastic stability, might assume other shapes,
very close to the basic shape, and accompanied by bulging. The least
value of such a load is called upper critical load. At the moment of loss of
stability by the shell, the load it carries is stationary with respect to
deformations accompanied by bulging. Making use of the equilibrium con-
dition of the shell under such circumstances, the above fact enables us
to evaluate, with some approximation, the value of the upper critical load.
Our method can then be applied when studying such elastic shell conditions.

Elastic equilibrium of the shell is characterized by the fact that the
functional

W=U—A4,

must be constant. Here, U denotes the energy of elastic deformation of
the shell and A the work done by the imposed loads. In the case under con-
sideration the shell is shallow, rigidly fixed at its edges, and of positive
Gaussian curvature. For such a shell the deformation energy under
bulging is mainly concentrated along the boundary of bulging and its value,
per unit length of curve 7 defining the zone of bulging, is given by the
formula

_ 2E¥an
Yz —uye

<

In the above expression « denotes the angle between the plane of contact to
the curve y and the planes tangent to the surface; p, the radius of curva-
ture of 7; h, the deflection within the bulging zone; and 3, the thickness
of the shell.

In our study we have approximated the arched shell shape by a double
mirror image bulging, 7 being a plane curve. When the bulging zone is
small and the shell surface sufficiently regular, this curve approximates
closely to an ellipse similar to the indicatrix of curvature.

Let us introduce a system of rectilinear coordinates, taking the center
of bulging as the origin, the tangent plane as the xy plane, and directing
the x-and y-axes along the lines of curvature of the surface. The bulging
zone boundary y can then be defined by the equation

x=AV R cost, y=AV Rysint,



where R, and R, are the main radii of curvature at the center of the bulging
zone, and A is a parameter characterizing the zone dimensions.

Let us evaluate the quantities « and p entering the formula of deforma-
tion energy U. We have

v RiRs
N (R, sin?t - Rycos3 /3 *

1_
.

In accordance with the formula of Menier

a == pkn,

where k. denotes the normal curvature of the shell surface in the direction
of the tangent to the curve y. Following Euler's. formula

b, = L(___R!_‘l‘_"’___) +L (___E‘_’E"___)
8= Ry\R;sin®f 4 Rycos¥t Re\Ry sind¢ 4 Rycos? ¢/’
1
kn = R, sin%¢ 4 Rycost’
An element of arc of the curve ¢ is given by
ds = A (R, sin%f + R, cosd {)"/adt.

Substituting the above values in the expression for Uand integrating along
the arc of the curve 7, we find the full deformation energy to be

U= gvds;f _memna
. p Y12 —ph) YRR’
47 FB3A)3

Y120 — p) Y RiR:

Let us now calculate the work done by the external load. We have

A= Qh
where Q denotes the tcotal load acting on the bulging surface and &, the
deflection. Further,
Q= pS,

where S is the bulging zone surface and p the pressure. In the case under
consideration, S, being the area of an ellipse with semiaxes equal to

AR, and AVR, is equal to

LS VR1R2~
Hence
A = Qh = pSh = rpV/ R RaN.
Now, making use of the equilibrium condition
diU—A)=0,
we are in a position to calculate the load supported by the shell. We have,
A=Y rpVRRAM] =0,
{;/ Ga—wyRR RiRdh } 0
and it follows that p= 2E e
Y3l —p)VRR,




As was to be expected, load pis stationary with respect to the parameter
A\ characterizing bulging.

Finally, the upper critical pressure for a shallow shell of positive
Gaussian curvature rigidly fixed at its edges is given by the formula

_ 2£82
b= AR
where R,, R, are the main radii of curvature of the shell; 3, the thickness;
E, the modulus of elasticity; p, Poisson's ratio. It should be noted that
1/R\R, is the Gaussian curvature. It follows, therefore, that the above
formula can be expressed in the form

Pe= 2E3K
T YR —y’

where K is the Gaussian curvature of the middle surface of the shell.
For a spherical shell of radius R,

R,=R,=R,

and hence the formula for the critical pressure is reduced to
_ 2E (5 2
b= Ba—m Te) '

Considering that
1 - p,’&.' lv

the above formula expresses a well-known result regarding spherical
shells, namely

—_ 2 Y
”‘"VSG—anE)'

As stated previously, we shall study the value of the upper critical
pressure for shells of positive Gaussian curvature on the basis of more
general assumptions regarding the mode of bulging, neglecting the case
of double mirror image reflection. Such a study will, however, show that
the value of critical pressure remains the same.

In conclusion we wish to make the following remark regarding the upper
critical load for shells subjected to a nonuniform external pressure. The
formula giving the value of the load supported by the shell under bulging
shows that such a value is independent of the parameter A2, which
characterizes the deformation, and in particular, of the size of the bulging
zone (parameter \). We are therefore entitled to conclude that in the case
of a nonuniform, but gradually changing external pressure the critical
load is determined by the value of the maximal pressure.

4. Loss of stability and critical loads for
various other cases of loading by
exXxternal pressure

It was shown above that the result achieved regarding loss of stability
of a shell of positive Gaussian curvature when loaded by external pressure

13



is valid for cases other than that of a uniform load. To some extent this
fact can be used in evaluating the critical load when the shell is loaded
by a continuous, but not necessarily, uniform pressure. We will now in-
vestigate other cases of loading, namely, those where the load applied to
the shell surface is not continuous. Two such cases of loading are of
basic importance: a load applied along a certain line, and a concentrated
load.

The case of a shell of positive Gaussian curvature subject to a con-
centrated load has already been studied by us /1,2/. We showed that such
a mode of loading does not cause loss of stability. It follows, therefore,
that for a complete investigation of the problem we need only examine the
case where the load is applied along some line on the shell surface. Itis
not difficult to find an example to illustrate such a case. We consider a
shell subjected to the pressure of a tightly drawn thread strung across its
surface and will examine the relevant questions of loss of stability and
critical load.

Consider a shell of positive Gaussian curvature rigidly fixed at its
edges and subjected to the pressure of a thread tightly stretched along some
arc of its surface (Figure 3a). For some value of the tensile force Q, loss
of stability will occur accompanied by formation of bulging zones along the
line of contact (Figure 3b). We shall evaluate the value of such a critical
tensile force presently.

FIGURE 3.

In contrast to the case previously considered, of pressure distributed
along the surface, when loss of stability is accompanied by a simultaneous
bulging of some finite zone of the shell, in our present case, bulging com-
mences to spread out from some central point situated on the line of con-
tact between the thread and the shell,

It seems quite natural to approximate the shape of the shell under post-
critical deformation to that of a simple mirror image bulging, as was done
in /1,2/. In such a case the energy of elastic deformation is given by
the expression

U = ncE (2h)313552 (k, + ky),

where 2k denotes deflection at the center of bulging; &, and &, are the
principal curvatures of the shell; 3 is the thickness; E, the modulus of
elasticity; and ¢ is a constant, In accordance with the latest data available
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p being Poisson's ratio.
The work done by the tensile force is

A =Qal




where Al is the finite displacement of the thread ends due to shell bulging.

Assuming the absence of friction between the thread and the shell sur-
face and that, in consequence, the arc of contact between the thread and
the shell is a geodetic, we can easily determine the value of Al. It equals
the difference between the arc AB and the chord joining its ends. Denoting
the normal curvature of the shell surface in the direction of the thread by
k,, and the deflection at the center of bulging by 24, we have

Al = 3 202V Fr .

If we now introduce a system of rectilinear coordinates x,y, and z, in
such a way that the xy plane is the plane of contact of the thread at the
center of bulging and the x-axis is along the tangent, then the shape of the
thread, being in contact with the surface along a geodetic, will be given
by the equation

y=""_;'+0(x=), 2= 00,
where 0(s%) denotes quantities of the order of x5,

If the length of the chord AB equals 2d, then the length of the arc AB is
given by

2,1 243
X ko d

d d &
= 2 xtdx o il =
s= | VTR _jd(1+ ) de =20 45

Noting that 2k =< k,d3, the above expression reduces to

s=2d 4 ¢ )2V k.
Hence the expression derived previously,

Al=s—2d= 5 @2 VE,.

Substitution of the above value of Al into the expression for work A
leads to

A=3Q @y VE,

The load supported by the shell is determined with the help of the
equilibrium condition
d({U—A)=0,

where the deflection 2k is varied. We have
d {rcE @RStz (y + k) — 5 Q @2V Er} =0,

and finally

1

Q = 3rcE¥2 (k, + k,) Ve




As in the case of continuous loading of the shell surface discussed previously,
tension Q is stationary with respect to the parameter 21; thischaracterizes
bulging.

Finally, the critical thread tension which might cause the shell to lose
its stability and start to bulge is given by the formula

1
V&,

Q= 3reEB (k, + ky)

In the particular case of a spherical shell of radius R,

1
kl=k2='§.

and the formula for the critical tension is reduced to

Q. = breEB )/ .

In conclusion we shall evaluate the critical pressure acting on a shell

of positive Gaussian curvature as transmitted by a plane [flat] elastic
support (Figure 4). It was pointed out in paragraph 3 that where loading

is done by uniform pressure, the value of the critical load p. is not a
function of the dimensions of the preassumed bulging zone. We conclude,
therefore, that in the case when the shell is loaded by pressure of an
elastic support, loss of stability will occur at the moment when the pressure,
at some point of contact between shell and support, will reach the above-

found critical value
2E¥

e A - RiR

FIGURE 4.

It follows, therefore, that maximum support deflection, h, at the moment
of loss of stability, is given by the relation

pe=hE’,
where E’ is the rigidity of the support.

Deflection of the support at any given point is expressed by
11 1
2=h——2—(R—lX’+7’y’)-

where R, and R, are the principal radii of curvature of the shell at the
center of contact with the support. It is not difficult to evaluate thc total
force acting on the shell, namely, the required critical force Q..

Q. = [[Fzdxay,
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where integration is carried out along the surface of contact between the
shell and its support.

Q. =tERV RiR,.

Substituting in the above expression the value of h as given by the
relation

Pe = hE')

we obtain
S— p2
Q= "VRle Te,.

where p. is the upper critical load under uniform external pressure.

§2. SPECIAL ISOMETRIC TRANSFORMATION OF A
SURFACE OF POSITIVE GAUSSIAN CURVATURE

Bearing in mind the fact that we are identifying, in some definite manner,
the postcritical deformation of an elastic shell with the geometric bending
of its middle surface, we shall proceed in this section to the study of a
special case of isometric transformations of convex surfaces. The simplest
case of such a transformation is that of a double mirror reflection. Results
obtained from such a study will be used to solve various problems of post-
critical shell deformations at the initial stage of bulging.

1. Formulation of the bending problem and
method of approach to its solution

Let F denot= a regular surface of positive Gaussian curvature and let

7 be a closed curve on it enclosing a region G. Further, let 1" be a curve
on the above enclosed surface and G, a portion
of G, enclosed by 1. We wish to consider the
problem of the isometric transformation of
surface F accompanied by caving in of region
G' and formation of ribs along the curves y
and ¢’ (Figure 5). When ¢ and 7’ are plane
curves, such a transformation is obtained by
a mirror reflection of region G in the plane
of curve ¢, followed by a subsequent mirror

FIGURE 5. reflection of a part of it, G’, in the plane of

curve 1°,

Taking into account future applications, the problem under consideration
is of interest to us for the special case when curve ¢’ is close to | and
region G, bounded by curve y, is small and of elliptic shape. It is under
such simplifying assumptions that we shall study our problem, and the
method of solution offered is described below.



In the special case when curves y and ¢’ coincide, the solution is trivial
and the isometric surface transformation corresponds to the original
surface F, It is natural to assume that when curves y and ¢’ are close
enough, the isometric transformation of surface F is different with regard
to substantial deformations only within the band enclosed by these two
curves, As far as the rest of the surface is concerned, finite bendings
may be replaced by infinitely small ones.

We shall not proceed to explore the structure of the transformed sur-
face within the band between curves 7 and ¢’, since the deformation of
this region of an elastic shell will be determined by considerations of
energetics. We shall characterize bending of the above-mentioned band
by some general relation which will enable us to determine the conjugation
conditions of infinitely small bendings, outside region Gand inside region
G', in the limiting case

T

Let A be any point on the curve y. Consider a geodetic perpendicular
from this point directed inward into region G up to its intersection with
curve ¢’ at point A’. Denote the length of this perpendicular by 3. Under
transition from surface F to the isometrically transformed surface,
points 4 and A’ will be displaced by <4 and v, respectively, where < and
< denote the bending fields of surface F at the respective regions., We shall
determine the value of the expression t,—<,. assuming curves y and 7’
to be close enough.

Formation of a rib along curve v, under an isometric transformation of
surface F, is accompanied by a rotation of the tangent plane with respect
to the tangent to curve 7. In passing to the limit y'- y such a rotation is
reduced to a mirror reflection in the plane of contact to curve y. It
follows, therefore, that, when curves y, 7 are close enough, we maycon-

A~ srm At a . -

L

7, i.e., directed along the binormal to this curve:
tA— ‘E'A, = ¢ge,

where e denotes the unit binormal vector, As far as the multiplier o is
concerned, whenever angle a between the plane of contact to curve ¢ and
the tangent planes to the surface is small, its value is equal to 243.

As previously, because of forthcoming applications we are interested
in the special case when curves y and ¢’ are close to each other. Under
such an assumption we pass to the limit ' - y. The problem of the bending
of surface F is thus reduced to that of finding fields of infinitesimally small
bendings +* within region G, and ~ outside this region, such that along the
common boundary, y, of the region they satisfy the condition

t—1 =ce.

In the above expression e denotes the unit vector along the binormal to the
curve 1, and ¢ is some function defined along this curve.

In order to simplify the presentation of the subject, we shall consider
first the problem of finding fields + and «' in the case when the elliptic
region G is coaxial with the indicatrix of curvature of the surface at a given
point. We shall call this the simple case. Later on we shall consider the
general case, namely, when the assumption of coaxiality is not valid,



2. General representation for bending
fields = and

Let P be the center of the caved-in region G. Taking into consideration
the fact that any substantial deformations of the surface F are confined to
the immediate neighborhood of point P, it is natural to introduce a rectan-
gular coordinate system, xyz, with its origin at P and such that the tangent
plane at P be the xy plane, and the normal to the surface coincide with the
z-axis., Further, if the x-, y-axesbedirectedalong the principaldirections
at point P, then the surface in the vicinity of P can be described by the
equation

z= —;— (ax® + by?),

where a and b denote the principal curvatures of the surface at P, In the
simplest case, when region G is coaxial with the indicatrix of curvature
at P, it can be defined by the inequality

Ax® + By? < 1.
Let us introduce new coordinates u, von the surface, defined by
u=xVa v=yVb
In these new coordinates our surface is described by the equations

=% L
=me Y=g 2 7 (@ + 0%,
Let £ x, { be the components of the bending field along the axes x, y, 2
respectively. From the equation of infinitely small bendings

drd= =0,

where r is a surface point vector, and =, a bending field vector, we obtain
the following system of equations for the functions §, 7, (:

] p—

Tagu-*-ucu— 0,

1

ﬁm-*‘v(,,—— 0,
,717;m+71;50+u5u+v% =0.

Upon elimination of functions § and 7 from the above equations, we obtain
the Laplace equation for ¢,

Introducing the expression

w=u -+ iv,

we can describe the general representation for the { component with the
help of the analytic function of the complex variable w as follows:

{ = Rel (w).



The remaining two components, & and yof the bending field can now be
described with the help of the function {(w), by means of the formulas

t=VaRe(—ul + [ Ldw),
5= VbRe(—vC—iSde).
The representation for bending fields derived above, applies equally
well to the general case. However, bearing in mind the solution of the
conjugation problem, it will be more convenient to give a somewhat different
form to the bending field representation in the general case,

The caved-in region G can, in the general case, be described with the
help of the inequality

a1 % + 20,0y + a4t < .
Let us introduce new variables u, v defined by the formulas

x =3 u+ Ay,
Y = Ayt + Ayyv.

We shall select the coefficients A; in such a manner that, in the new co-
ordinates 4, v the surface shall be given by the equation

2= -}f(u’+v’),

and the caved-in region G, by the inequality
A + Bur< 1.
The possibility of such a selection of the coefficients i; is made certain

by the positive definiteness of the quadratic forms

lln..l [ PR ) ~ & 0L -

which, with the help of the above-mentioned transformation, are reduced
simultaneously to the canonical form,
Further, let usintroduce the variables %, ¥ defined by the equations

£=xVa, j=yVb
This transformation again reduces the expression for z to a sum of squares
e, -
z=5@x+5.

It is obvious that the transformation of variables ¥, yinto u, vis orthogonal
and is given by the formulas

= ucosd— vsin$,

x
y=usind 4 vcos$d.

It follows, therefore, that the mutual interdependence between the variables
x, y and «, vis defined by the expressions
x= —IT(ucosa —vusind),

e
y=7%(usin0+ucosa).
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Angle § is evaluated by making use of the condition that our transformation
reduces the form

apx* + 2a,,00 + @yl
into
Au® 4 Bu2.

Quantities 4 and B are then eigenvalues of the expression

a3 + 2a5,xy + aylt
with respect to
ax® 4 byt

and are, therefore, the roots of the characteristic equation

a, —Aa, a;,
a1, Az — b

=0.

It was shown above that the bending field, when expressed through the
variables %, y, is defined by the equations

L=Rel(d,
t=VaRe(— %+ [ Laz),
n=VFRe(—gi—i|La3),
where {(?) is an analytic function of the complex variable z=1Xx-+i7.

Let us rewrite the above expressions in terms of the variables u, v,
Bearing in mind that

z=we®, w=u+iv,
we have
{=Rel(w),
t=1aRe(— (ucos$ —usind) L+ e® | L duw),
7="VBRe(— (usin® + vcosd) ¢ —ie? [ Cduw),
where ((w)="{(we? is an analytic function of the complex variable w.

Such is the representation for surface bending fields in the most general
case,

3. Conjugation of bending fields < and <
in the simplest case

The problem of isometric transformation of a convex surface F,
presented in paragraph 1, was reduced, in paragraph 2, to that of con-
structing two fields of infinitesimally small bendings, « —beyond region G
and +'-inside G, such that on their mutual boundary, y, they satisfy the
conjugation condition

t—1 = ge.

In the above formula e denotes the unit binormal vector of the curve y, and
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¢ is some given function on the curve. Presently, we shall complete the
solution of the bending problem by constructing the bending fields < and «’.
In paragraph 2 we found a general representation of the bending fields
by making use of the analytic function of the complex variable w=u+iv,
namely
{=Rel(w),
=V aRe(—ul + | Cdu),
1= VbRe(—vt—i [ tdu).

Analytic function (' (w), within region G, i.e., inside the ellipse

A B

— = 3
au+bv<l,

corresponds to the bending field <, while the analytic function ¢ (w), outside
the ellipse

A B
—a—u’—}— TU'} I,

corresponds to the bending field =. The difference between the bending
fields along the curve 1, i.e., under

A’ E’_
—E—u—}—bv—l,

which is of interest to us, is given by the system of equations

Al = Re Al (w)
At =V aRe (—ubl + { At du),
LR AL Rl S| os aw),
where A{ (w) denotes the difference between the analytic functions { (@) and
¢’ (w) on the ellipse

A B
A s _
au+bv—l.

We shall now pass from the complex variable w to the variable v, assuming
that

w=)\m+%.

Let us select the constants X and p in such a manner that to the circle
|@] =1 on the plane of complex variable », there should correspond the
ellipse

A + —?— =1

a

on the plane w. Evidently, this can be achieved by submitting the quantities
A, # to the requirements

re=VEoa—e=V g
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On the boundary of the G region, i.e., on the ellipse

A 2 B v J—
T =1,

o=¢%, and therefore

u=A+p)cose, v={(h—p)sineg.

In the formulas defining Ax=+t—+<" we shall effect the transition from
variable w to w =¢%, by assuming

AL (@) = P(¢) +1iQ(9)
We thus obtain

AL=P
A = — Va4 p)cosgP + [ (h+p)singP +
+ (v — 1) cos ¢Q) e},
Aq=Vb{—(R—p)sineP + | (A — ) cosgP —
— (A -+ p) sin 9Qde)}.

Let us write down the formula of the curve ¢ (the boundary of the G

region on the surface) by taking the angle ¢ =argo as parameter on the
curve. We have

u At

X = —= = —=-C05¢,
Vi Va f
v

y=—= Esing,
14 V

ut4v? 2 p,

== ~+ Apcos 29,

and, therefore, the curve is defined by the equations

x="Ttcosq, y=2"Lsing,
Va ¢ Y V P
2 2
=)%_L+lp.c052:p.

Let us evaluate the vector of the binormal to curve 1. Its components
along the x-,y-, and z-axes are the minors of the matrix

s 2,)
x’l, y’, z’ 0
We use the notation

’ 0

SAIER

’
2x
a,= szw\r as =

o]

x"y

xlyrl

Omitting all the intermediate computations, we give below the final ex-
pressions for a, a,, and ay:

a=— V—_(k— ) Apcos® @,
@, == V‘ (1) hpsin® ¢,
B et
4y == -
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The conjugation conditions for the bending fields may be expressed as ‘
follows:

At = cay,
Av = ca,,
AG = ca,.

The above expressions include a factor normalizing the binormal vector
in a,

Let us differentiate the conjugation conditions with respect to ¢ and
substitute in the expressions thus obtained the above valucs of A%, Aw,,
and Af{. We obtain

(ay =P,
(A" = —Va{(r + u)cosg P’ + Q(r —p)cosel,
(Aq) = —Vb{(A—p)sing P+ QA + p) sin¢}.

The conjugation conditions can now be rewritien in the following form:
(h+ ) cose P+ QA —p) cosp = T — ¥ hn o cos”e)',
. . 4 -
A— P’ A =——( A 30)
A—p)sine P + QA+ p)sing VEE(+P) p (esin®)’,

’ ] ’
P =V§()\’—P')°.
. . |
or, by incorporating the factor Ve o

(A p)cose P+ QA —p)cosy == 4 (A — p) A (o cos?9)’,
(A —p)sing P+ QA + p)sing = — 4 (A 1) M (osin¢)’,
P = (M — .

At first glance the above conditions may lead us to suspect some in-

~mamam -l

P — O Y D N S L T ]

character of curve 7/, function ¢ is, in reality, an arbitrary function and
we thus have 3 equations for the 2 functions P and Q. However, it is easy
to see that the third equation follows from the first two, and consequently
we have two equations for the two functions P and Q, which we can solve.

For our purposes we have assumed a rather simple shape for the caved-
in region G, namely that of an ellipse, It would seem expedient therefore,
to assume for s the simplest possible function — a constant., All further
deliberations will be carried out for just such a case.

Let

o == const.

Then
P=(M—pY)s, Q=-—6lssin2e,

and therefore the following condition,
{—{ = (A*— p o —6)po sin 2¢i,
holds for the analytic functions { and ¢’ defining our bending fields on the
curve 7.
Let us now evaluate the analytic functions { and (' proper. We shall

expect function { to be such that bending field :, outside region G, defined
by it will vanish at infinity. The necessity for such a stipulation is dictated
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by future applications. This condition will be satisfied if we require that
function { decreases as l/v®* at infinity.

Leaving aside the question of the single-valuedness of the solution to
our problem (it appears to be unique), we shall try to look for it by assuming

C=2, U=fe'+g

where «, B, and ¢ are some constants.
On the boundary of the G region, i.e., when |e|=1,

t;=;;_= a (cos 29 — i sin 2¢),

U= p(m+%)2+c= B{(A2 -+ p?) cos2p +

+ i (A — p2) sin 2p + 20p} 4 c.
Therefore,

{—U = (a—3 (2 + u?) cos 29 —
—i(a+ B (A —p?)sin20 — 203 —c.

Remembering now that
{—¢ = (3 —p?) o — 6hposin 294,

we obtain the following system of equations for the constants «, §, and c:

a—B (3 +p3) =0,
a4 B (1 — ?) = Bhyo,
— i —c= (2 —p?)o.

Solving, we find
s

Once functions  and {’ are evaluated we know the bending fields « and
< and have thus solved the bending problem of the surface F posed in
section 1. In the case when the original surface is defined by means of
a vector function r, the isometrically transformed surface is given by the
vector function r 4+ within the caved-in region and by the vector function
r+t beyond it. Vector functions r and < are evaluated with the help of
the analytic functions { and (' in accordance with the formulas derived
in section 2,

4. Conjugation of bending fields —
general case

Just as in the simple case, discussed above, the bending fields t and
< on the boundary, ;, of the caved-in region satisfy the conjugation
condition

t—n' = oe,

where e denotes the unit binormal vector of the curve y, and ¢ is some
function defined on this curve.
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Bending fields « and <’ can be represented with the help of the respective
functions { (w):

{ = Rel(w),
t=) aRe|{—(ucos® —usind) T+ e"°_ft'.dw},
1= BRe{— (usind + vcosd) ¢ —ie® [ Ldw}.

For the field <,{(w) is the analytic function within the region
Au? 4+ But > 1,
and the respective function, (' (w), for the field +' is analytic within the
region
Aud + B < 1.
The boundary of these regions is an ellipse defined by the equation
Aut 4 Buv? = 1.
The difference between the bending fields «—+’, along the curve y is
given by the system of equations,
Af = Re Al (w),
At =V aRe{— (ucos® —usind) AL+ ¢® [ Aldw),
An=V bRe{— (usin® + vcos) AL — ie"’S Aldw),

where Af(w)is the difference between the analytic functions {(w) and {'(w)
on the ellipse

Aut 4 Bv? = |.
As in the simple case let us introduce the comnlex variahle w acanmina
w=ho+ L
the constants A, are to be evaluated from the condition that to the unit

circle|e|=1 on the plane w there should correspond the ellipse
Aud + But =1,

For this purpose we require that

Mfp= -1-,17' A—p= Vlﬁ
On the G-region boundary, i.e., along the curve 1,
w=e",
and, therefore,
u=(+pcosp, v=(A—p)sine.

Let us rewrite the formulas defining the difference between the bending
fields, At, along the curve ¢ by introducing w=e® in place of the variable w.
Assuming, as in the simple case, that along y

AL (w) = P (9) + iQ (3),
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we shall have
A=) aRe{— (Acos(p + 9) + pcos (8 — o)) (P + iQ) +
+ie [ (P + iQ) (ke — pe) dy) =
=1 a{~(rcos (¢ + %) +pcos (®—¢)} P —
— [ (rsin (s +-9) —psin (8 — ) Pdp—

— [ cos (g + 8) —pcos (0 —2)) Qdy).
Hence

2 (88 = — Va{(hcos (o + ) + weos (0 —9) P’ +
+ (hcos (p 4 8) —pcos (3 —¢) Q).

In a similar way we obtain,

(}—;(An) =—Vb{(Asin(®+ o) +psin(®—9) P' +
+ (Asin(p + 3) —psin (8 —¢) Q).

Finally

d Y
Z@y =P

If we denote the curve binormal vector components by a,, ¢, and a,,
then the conjugation conditions, after differentiation with respect to ¢,
will be given by

289 =@,
(60 = @),
‘%(AC) = (a0)".
Let us evaluate the expressions for the components a,, ¢,, and a; and sub-

stitute them in the above formulas.
The surface F is given in terms of the coordinates u, v by the equations

1 .
x—ﬁ(ucosﬂ—vsmﬁ),
y=—V—T)(usm8+vcos&),
2= (W + 09

Along the curve g
u=(A-+pcose, v=(A—p)sing

Substitution of the above values of 4, v in the surface equations leads us to
the equations of the curve

sz/'_a[(A+p)cos<pcosﬁ—(x—p) singsin 8],
y =T/l"sl(k+u)cosavsin8+(**-**) sin gcos B,
= )‘"’,‘;*" + Apcos 2.

27



Using the curve equation we evaluate the binormal vector components

2 4% : : Ap
a, = Z;" =_7%(1+p)sm{‘)smscp—I—/—E(A—p)cos{‘)cos"q:,
_|Z¥) e Ssinfo — PO si 3,
a, = z"x"l_ Ve (A +p)cosdsinde VE( ) sin § cos® o,
o D R
as xnyrr Va_b( P’)'

Substituting the above values of ¢,, a,, and a; in the conjugation con-
dition and incorporating the factor i/ ab in o, we obtain

—[hcos(p + 8) + pcos (8 — )] P — Q[hcos (¢ + ) —pcos (8 —¢)) =
=—4Mp[o (A4 ) sindsin®¢ + o (A — p)cos b cos®e]’,
— [hsin (o + 8) + psin (8 — ¢)) P’ — Q[N sin (5 + 8) —
—psin(® —g)) =4hp[o (A + p)cosdsin*¢ —ao (A —p)sindcos? ¢},
P =[c(d—p)).

Multiplying the second equation by i and adding to the first yields

— P’ (Rei6+9) - ppitd—9)) __ Q (Ael(e+d) — potth—p) —
= [4hps (A + p) sin? ¢e®i — dhpo (A — p) e® cos? ¢]'.

Cancelling e® and separating the real and imaginary parts, we obtain
P’(A+p)cose + QA —p)cose = (4hp (A —p) acos’ )",

In the general case, we obtain for the functions P and Q a system of
ecquations identical to that of the simplest case. Proceeding as before,
we assume

¢ = const.

Then

P=(—pYo,
Q = — 6ipasin 2g.

Then, as in the case previously discussed, we evaluate the analytic
functions { and {’ which define the bending fields:
C=5, U=pe'+ec
p=—20 a=—2pr 1o

With the help of the functions { and ¢, and using the respective formmlas,
we determine the bending fields < and «, as well as the vector function
which defines the isometrically transformed surface.
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§ 3. LOSS OF STABILITY OF SHELLS OF ROTATION
UNDER VARIOUS MODES OF LOADING

It is very probable that of the shells of positive Gaussian curvature,
those of rotation are the ones that are mostly in use. Thus the study of
loss of stability of this class of shells is very important. In the present
section we shall study loss of stability of shells of rotation of positive
Gaussian curvature when subjected to various modes of loading: internal
pressure, external pressure, and torsion. In particular, we shall evaluate
the critical load in each one of the above cases.

As a preregquisite to the study of loss of stability of shells of rotation
we shall study the loss of stability of a shell subjected to external
pressure, We studied this problem in section 1 where we considered
shallow shells of positive Gaussian curvature with edges rigidly fixed.

In our present study we shall start with more general assumptions regard-
ing the character of bulging, having no connection with the case of double
mirror reflection.

1. Loss of stability of a shell of positive
Gaussian curvature subjected to uniform
external pressure

We start with the assumption that loss of stability of a shell subjected
to external pressure is accompanied by bulging of a small, but finite,
region G having the shape of an ellipse. It is assumed that region G is
coaxial with the indicatrix of curvature at its center P, Inparticular,
region G and the indicatrix may be similar and placed similarly, correspond-
ing thus to the case discussed in section 1.

We shall approximate the shape of the shell under noticeable bulging to
the isometric transformation of the original surface studied in section 2.
In such a case, as was shown in section 1, energy of shell deformation is
concentrated, in the main, along the boundary of the bulging zone (we shall

denote it by y). For unit length of curve y, its value is given by
U— _2E¥%
Viza—wye

In this expression, his the normal deflection at the zone of bulging along
the boundary y; p is the radius of curvature of y; a, the angle between
the plane of contact to 7 and the surface tangent planes; E, the modulus
of elasticity; and v, Poisson's ratio.

For the isometric transformation of the surface constructed in section 2,
and along the boundary 7 of the bulging region,

h = Re (Al),,

where (AQ), is the difference between the analytic functions along ¢, defining
the bending fields without and within region G.

Since G, the region of protrusion, is small, we can evaluate the angle «
with the help of the formula

Q
il
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where k is the curvature of curve y, and k. is the normal curvature of the
original surface in the direction of 1. Let us evaluate k and k,.

As before, let us introduce a system of rectilinear coordinates, x4z,
taking the xy plane as the tangent plane at the center of bulging P, the
axis z to be normal to the surface, and the origin to coincide with point P.
The axes x and y are directed along the tangents to the lines of curvature
at P, In such a case the surface in the vicinity of point P is defined by
the equation

7= (ax* + by),
and the first and second guadratic forms of the surface are given by

I =dx+ dyp,
11 = adx® + bdy.

It follows, therefore, that the normal curvature of the surface is given by

R __adx®+ bdy?
" A dyt
It was shown in section 2 that curve 7 is defined by the equations

x=pcosy, y=gqsing,
where

+

Atp A—
ﬂ'

P=V~ 4=V_v

ol

and A and p are given by the relations

+
)‘+|"’= l’ 7‘;‘) )\—P=VF-
The constants A and B define the region of bulging G

A+ byt < 1.

Since region G is small, the curvature of 7 may be evaluated with the
help of its projection on the xy plane, defined by the pair of equations

X =pcosep, y=4qsing.

Under these circumstances we obtain the following expression for the
curvature:

Bow— PO
(pYsint ¢ + g*cost o 3/2

Substituting in the general expression for the normal curvature of the
surface

dx = — psinede, dy = q cospdyp,
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we obtain the normal curvature of the surface in the y-direction

_ (A4 p)tsinty 4+ (N —u)*costy
- prsin?o 4 gf cos? e

ka

Further substitution of the above values in the formula for U, followed
by integration along the arc of curve y, leads to an expression giving the
full energy of deformation. We have

3 A s sin? h — ) £ cos? o\ . 1
R o
ds = (p*sin? ¢ + g2 cos? ¢)V/2 dg.

Therefore
2=
a . d
ST’ds = OS{(Hr )i sin? g + (A — p)? cos® ﬂ’p—‘; =
1

= (M 4 pt - 4237 f,—z ,

or, remembering that

-
¥
3

I
i

~
Il
<
N
L~
<
ol

we obtain

1 2z Vab
(2 ds = Z V8 oy et g,

The full energy of deformation is

U= SUds = T/I—Eﬂ"T)?[Kf (8 pt + 40,
1

In view of the smallness of region G, and with our choice of coordinate
system, we can assume h to be equal to the difference between the com-
ponents of the bending fields < and <'along the z-axis (section 2), Then

h=P=(*—pda.
We thus obtain a final expression for shell deformation energy

= 2 VS (s - 40,

We shall now evaluate the work, A, done by the external pressure. Let
AV denote the change of volume, confined by the shell, under deformation.

Then,
A = pAV.

Since region G is small, substantial shell deformations occur in the
vicinity of P. It follows, therefore, that the quantity AV can be evaluated

with the help of the integral
AV = S ¢ dxdy,
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where ({ is the displacement, under deformation, of surface points in the
direction of the z-axis. The magnitude of the displacement { is de-
termined with the help of the two analytic functions {(w) and {’ (w) as follows:
Beyond the region of bulging

(= Rel (w),
and within the region

{ = Rel’ (w).
In section 2 we obtained the expression for the functions {(w) and ¢ {(w).
We therefore have

AV=Re{55;' (w)dxdy+5jg(w)dxdy}.

Integration of the first term is carried out throughout the inner area of
the ellipse

Ax*+ By* 1,

and that of the second, throughout the remaining portion of the xy plane.
Substituting the variables u, v in place of the variables xy

u v
ve T
we obtain
" ’ . _l__ ’
‘HC (w)dx dy = Va_bSSQ (@) du dv,
where integration of the right-hand side is nerfarmed thranahmat tha Svea-

T IS GRS PV =10

—u2+—:;v"‘<l

on the plane of the complex variable w=u+4iv. For the purpose of evalua-
tion of this integral let us examine the curvelinear integral along the
boundary of the above-mentioned ellipse

I'= <§> U (@) @ dw.

Transformation of the integral I’ to a surface integral along the area of
the ellipse, using the Green-Ostrogradsky formula, and the fact that
function (' (w) is analytic, leads us to

I = —2i § 5 t' (w) du do.

The integral

I=§ ()@ dw

is transformed in the same way as an integral taken across the exterior
part of the ellipse. It should be carefully noted that at infinity {(w)decreases
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as l/w?., Preserving the same sense when integrating along the ellipse
boundary,

/=2i§jc(w)dudu.

Substituting the above values of the integrals in the expression for AV,
we obtain

AV = _Re—<§‘><' @) —t () @ dw.

It should be noted that at the integration boundary
L) —t @ =Al=P+iQ
where P and Q have the values
= (A2 —p%o, Q= —6lpasin2e.

At this stage we introduce a new variable o where

w=)\m—|—%.

In the o plane the contour of integration is the unit circle, and therefore

© = ke’ | pe i,
& = he™ | pe,
AL = (A2 — p?) o — 3hpo (2P — e~2%).

After substituting the values of w,, and A}, derived above, in the
integral

Al (@) w dw,

la (=1

we proceed without difficulty to the integration proper and obtain the following
result:

$ AL (@) B dw = 2mio (A + p + 4A%).

Jwl=y

At the same time we obtain

AV = JZE (M4 pt + D7),
and, therefore,

A= T2 (M4t 4 1)

The quantities X and p characterize the shape of the bulging region and
o, the magnitude of bulging. It i's convenient to introduce a single
parameter
e = mo (A + pt + 40%7),

which characterizes the postcritical shell deformation, Using the above
parameter, the energy of shell deformation and the work done by the
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external pressure are evaluated from the formulas

_ 4EB Vabe
T VR -’
= P
Vab’

The load supported by the shell is evaluated by using the shell equi-
librium concition at the moment of bulging

d
FU—A)=0.
We have
ABmVa  p g
Vﬁ(l—v’) V—a—l;— '
and therefore
__ 2EMab
P= Viza—vw’

Taking into account the fact that a and b are the principal curvatures
of the shell at the center of bulging, we can rewrite the above formula as

_ 2E¥
p= V1—2(l — v R Ry '

where R, and R, denotc the principal radii of curvature.
We observe that under the more general assumptions regarding the
mode of bulging of the shell at the moment of loss of stability, we still

er em avanaas s C oW L GO LI UILIT LIUL T DLLLIPLE

case studied in section 1.

2. Special isometric transformation of a
convex surface of rotation

Experience shows that loss of stability of a shell of rotation of positive

Gaussian curvature subjected to internal pressure may occur simultaneously
with the formation of regularly placed elliptical
dents along some parallel (Figure 6). The
physical reason for such a loss of stability is
as follows. It is possible that under the above-
mentioned mode of shell deformation, accompanied
by the formation of dents elongated along the
meridians, there may occur a general increase
of volume confined within the shell, in spite of
the caving in of the shell surface along the

FIGURE 6. system of dents inward into the confined volume.
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As in our previous study we shall approximate the shape of the shell
under bulging to an isometric transformation of the original surface. We
shall not study such a transformation in detail, but limit ourselves to
evaluating all such quantities related to deformation as will be required
for the solution of the shell stability problem. In particular, we are
interested in finding out by how much the planes of the parallels enclosing
the system of dents move apart.

Since deformation of the shell without the zone of dents is small, the
finite surface bending of this part of the shell may be considered as an
infinitesimally small bending. The corresponding bending field will be
evaluated by superposition of bending fields related to the formation of
various single dents. A bending field, conditioned by the formation of a
single dent (of the region of bulging) will be considered by us in the form
determined in section 2.

Let A be any point of the surface situated at a small distance from the
parallel h along which the regions of bulging are situated. ILet us evaluate
the § component of the bending field in the direction of the meridian., Let
P be the foot of the geodetic perpendicular drawn from point A to the
parallel 1. We introduce a system of rectilinear coordinates x, y, 2, in
such a way that the x-axis be tangent to the meridian, the y-axis tangent
to the parallel, and the z-axis normal to the surface.

It is natural to assume that the magnitude of the t component is de-
pendent mainly on the shell bulging regions in the vicinity of point P.
Therefore, if we denote by &(x, y) the bending field component along the
meridian, corresponding to the bulging region having P as a center, then
the component t in which we are interested, and which is a function of the
whole system of bulging regions produced, will be

=Ytk g,

[}

where y, denotes the coordinates of the centers of the adjacent bulging
regions.

Let us examine more closely the function £(x, 4. We recall that in
addition to the variables x, y, we have also introduced the variables u, v,
defined by the relations

xVa=u, yVb=v,
the complex variable
w=u-+t1iv

and the complex variable o
w=\o + %

(see section 2). In the above expressions, a and b are the principal curva-
tures at the center of bulging P, and &, p are parameters characterizing
the shape of a bulging region. It is imperative to note that x» and p are
small for small bulging regions.

In section 2 we have derived the following expression for the bending
field component &, related to the appearance of one single bulging region

E=V5Re(—u(+5(.dw),
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where {(w) is an analytic function of the complex variable wwhich, outside
of the region of bulging, is determined with the help of the formula

t= 5 a=—204 ).

Introducing the same value of { in the formula for § and integrating, we
obtain

E:al/'ERe(—i—-—'J—i:).

Ll)' w ' 3(‘)"
When Jw|has a lower limit, then the corresponding absolute value of o,
defined by the relation
W= ha + —’:: .
is quite big for small » and u. It follows, therefore, that for small » and

# we may neglect the term p/3w?® in the formula for i and, moreover, we
can consider that

w = Aw.

We may therefore rewrite the formulafor the ¢ component in a simplified
form

fe —022 ) a Re(u%—.L%)).

or, by separating the real part

= —AQy au“m.
Let
U = Vb Yee
Then
~ 1
— ___)_2 3 e
¢ *Vau Ek(uwvl)"
where
u=~HhVa.

The summation on the right-hand side of this equality, in accordance with
our assumption, includes the adjacent regions. However, because of the
very satisfactory convergence of the series, we may consider the summing
up as carried out for all values of k:

F=—Naya u’E

1
(wr + o)t
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When the spacings of the bulging regions are close enough, i.e., when
Av = U, — U4,

is small, we may replace summation by integration in the formula for t.
We then obtain

@ o

‘Ez_)ﬁa]/aua 3:

dv
Av u® 4

or, by replacing the variable v=ut,

oM Va S‘ dt

v J (T+ep’
We have
S dt =
T+~ 3
and therefore
'g _ FIR T V-l;
7Y
Introducing in the above the value
a=—200 1w,

we obtain the following final formula for %:

’E _ 3 VE).[L("A*-;—;H)c
- 24v ’

If we have point Aon the opposite side of the zone of bulging regions, it
will be displaced along the meridian, under the deformation in question,
by exactly the same amount but in the opposite direction, It follows,
therefore, that the moving apart of the parallel planes, confining the zone
of the bulging regions in which we are interested, will amount to

3z Va Ap (A2 4-pfacosa
&= Av ’

where a« is the angle between the tangent to the meridian and the surface
axis. Introducing

=2
y ik

we obtain

3
e=g Y 50+
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We recall that in the above a and b denote the normal curvatures of the
surface in the direction of the meridian and parallel respectively, 4y is
the distance between the centers of adjacent bulging regions, and Ap (3 +p?)o
is a guantity characterizing a separately taken bulging region.

With the evaluation of the quantity ¢, we complete our study of the
isometrically transformed surface and will proceed to investigate the shell
stability problem.

3. Critical internal pressure for a convex
shell of rotation

The critical internal pressure causing loss of stability of a shell of
rotation, accompanied by the formation of a system of bulging regions along
some parallel circle, will be determined by a study of the elastic equi-
librium under substantial bulging. The equilibrium condition is

d(U—A)=0,

where U is the shell deformation energy and A is the work done by the
pressure.

In paragraph 1 we arrived at the following expression for the shell
deformation energy, related to the forination of one bulging region

32z YV ab R
= %l/j: 3 (M pb 4 4233,
If we denote by n the number of bulging regions, the corresponding ex-
pression for the total shell deformation energy will be

— SR (M pt o A% 0,
U V12<1—v-)°( + pt 4+ 4

We now turn to the question of work A, If we denote by AV the change
in volume enclosed by the shell caused by bulging, then the work done will
be

A = pAV,

where p denotes the internal pressure.

Let us consider two planes perpendicular to the surface axis and con-
fining the zone of bulging regions. The change in volume, AV, is conditioned
by an increase in distance between the two planes under deformation of the
shell and formation of bulging regions. We shall denote the corresponding
components of AV by AV, and AV, respectively.

The quantity AV, is negative and its value, corresponding to one bulging
region, is given by the formula

AVi= — 5 0w o 40,

Consequently, for all the n regions

AV, = — Jl—b (A + pt + 403%2).
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The other quantity is
AV, = =p’,
where p is the radius of the parallel circle along which the bulging regions
are situated, and ¢ is the increase in distance between the two parallel
planes enclosing the zone of bulging regions under the deformation of the

shell. Substituting in the above the value of ¢ as determined in paragraph 2,
we obtain

AV, = wp”i——;]/% A (A4 p?scosa.

Finally, we obtain the following expression for the work Adone by the
internal pressure p:
A= __me Ottt 402 pn
Y ab
3 @

+ mp? Iy V? cos akp (A3 -+ p2) op.

Fixing the shape of a bulging region (parameters p and 1) let us vary

the deflection in the bulging regions (parameter s). From the condition
of equilibrium

d

we obtain the following relation for the value of pressure p supported by
the shell at bulging

2E¥2x Va_b

T (o (4 B O3 0 7 (4 o WY rp —

—p? i-’y‘]/% cos ahp (M + p?) p = 0.

Multiplying the above relation by

Ay =1
2“—"—9 }/ab
and noting that
nAy = 2np,

we obtain
4E¥%ad
VT30 —on (A4t - W) +
O+ w4 402 p— L akp (08 + ) peosa = 0.

Dividing the above by

A 4 pd M2
and assuming
A
d=wrn

39



leads us to the expression

4E¥ab __Sapcosa8p
}/ﬁ(l_\,t) 2 14292

=0.

Therefore,

___AEvab 1
Yi2a —w2) 3apzcosa a1

where

4
¥ =

The parameter 8 is a function of the parameters X, p and, consequently,
is a characteristic of the shape of a bulging region. et us investigate the
domain of allowable values of the parameter #., To do this we note first
of all that

)\p.

Bz)\a.{_Pz

has —1/, and 4!/, as its limits. Further, #* is a monotonic function of b,
since

dve 1 —o9
@ = ax a0

It follows, therefore, that 8* has -1/, and 41/, as its limits.

Taking into account the interval of allowable values of $* we conclude
that the lonct =rooCZUls Gides wuilhs wie snell may lose 1ts stability, this
being accompanied by bulging along a given parallel circle, is given by the
formula

_ 2EMab 1
V3ia—w %cosu—l

It should be remembered that in the above formula, ¢ and b are the
normal curvatures of the surface along the meridian and parallel respective-
ly, p is the radius of the parallel, and « is the angle between the tangent
to the meridian and the surface axis. Introducing in this formula R, and

*R;, the principal radii of curvature of the surface, where

and remembering that
cosa 1
P Re’
we obtain
. 2£8 1
P Vsa—wre
2RR;
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The least value of p is obtained by letting $#=%/;., The corresponding

value of 8is 1/,. Since
b=,

this is only possible when i =yp, meaning that the bulging region defined by
the equations

A—p .
x=l*—+,__TPCOSCP, y=——,_LLSlnCP,
va vb

degenerates into a segment of the x-axis (meridian}). The physical inter-
pretation of such a result is that the dents formed as a result of loss of
stability by the shell must be greatly elongated along the meridians, This
has been confirmed by corresponding experiments,

Let us use the above formula to evaluate the critical pressure for a
flattened out ellipsoid of rotation. Let @ and b be the semiaxes of the
ellipsoid, where b<a. Since the Gaussian curvature of a flattened out
ellipsoid increases monotonically as the equator is approached, and the
radius, p, of the parallel increases as well, the minimal value of p is
obtained when bulging occurs along the equator. On the equator

2
n=a, R,=a, R1=%.

It follows that

2E%? 1

p:—-——

31— &40
3 b

In the case of a strongly flattened out ellipsoid (¢ @)

4ER
YI(—ar’

o~

It is important to note that the magnitude of the critical pressure is
never lower than the above value, for any degree of surface flattening out.

4. Loss of stability of a convex shell of
rotation subjected to external pressure

In section 1, and in paragraph 1 of this section, we discussed the
problem of loss of stability of a shallow convex shell subjected to external
pressure. The following formula for the value of critical pressure was
obtained

2E%2

P Fa—wmRR,
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The above result was based on the assumption that the shell is shallow and
in calculating the work done by external pressure

A = pAV,

we used the following expression for AV, the change in volume confined by
the shell,

av = || tdxdy,

where [ is the z component of the bending field during shell deformation.
This formula would be exact if the bending field were to be perpendicular
to the xy plane, and accordingly, the deformed surface were to be defined
by

where 2z, is related to the original surface. In reality, such an assumption
may be considered to hold good only in the vicinity of the center of bulging
and, consequently, we might expect a different value of the external
critical pressure for a nonshallow shell. Presently we shall discuss this
problem for convex shells of rotation.
We assume that loss of stability of a convex shell of rotation loaded by
an external pressure is accompanied by the formation of a system of dents
along some parallel (Figure 7). Comparison
with the result obtained in paragraph 2 leads us
to think that such a loss of stability can be
realized if the dents are substantially elongated
in the direction of the parallel along which they
are situated. As in the case of internal
o pressure, we shall consider the change in
——— vuluine conined by the shell under deformation
as being made up of two parts: AV, and AV,.
AV, is the decrease in volume directly related
to the formation of bulging regions, and AV, is determined by the proxi-
mity of the parallel planes containing the zone of bulging regions:

FIGURE 1.

AV, = =2 e ‘ 1,2
Vv, Vab( + pé 4 4% n,
e ST
AV, =_nP’A—:V%Ap()\'+9’)ccosa.

It follows that work done by external pressure, p, under shell deformation
is equal to

A= Vl;;; (M + pt - 4% pn

-+ mpt i—; V% cos aip (A? + u?) op.

This formula differs only in sign from the corresponding formula in the
case of internal pressure,
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As far as energy of deformation is concerned, its value is given by
the expression derived previously, namely

- 255127:1/’ ()\‘

Viza—wm et 8% on.

As in the case of internal pressure, from the condition of shell equi-~
librium,

we obtain the following relation for the value of pressure, p, supported by
the shell at bulging:

2E8%2r V ab
yid—
- La_b (M + pt+ B np -

2 (04 4wt - 4% n—

-+ Kp’%ly‘V-:— cosaip (A2 4 p2) p =0.
Solving for p, we obtain the following value after simplification:

p= 4E¥%ab 1
VI2(1 —v%) __30920“3._‘_1 !

where, as before,

and

e
b=

The least value of p is obtained for the greatest, in absolute magnitude,
negative value of #*, i.e., for # =—1Y,;. Substituting this in the expression
for p, we obtain

4E¥%ab | 1
Vizda—w ‘—;fcosa+l

p=

Application of this formula to the case of shallow shells, if this is at
all possible, results in a value of p which differs but slightly from that
obtained previously

__2Bvab _
P="V3u—w"

since in the case of shallow shells, e ==/2, and, consequently, cosa=z0.
Let us examine the shape of the bulging regions. Since #=—1/, it
follows that &= —1/, and, consequently, A= —p. A bulging region is
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defined by the equation

x=1‘1—j'§cosa_>. y=l‘7—;sincp.
When A = —pu, our ellipse degenerates into a segment of the y-axis. The

physical interpretation of this is that at loss of stability caused by external
pressure, the regions of bulging are strongly elongated along the parallel.

As in the case of internal pressure, the formula for the critical load
can be transformed as follows:

4E£8?2 1

pP= - 2 '
VIZQ — )RR, ¥
LAY ?R1R5+I

or,

2E%* 1

p=—mT""""* "3,
V3 —~vy b ARRy

It should be remembered that in the above, R, and R, denote the principal
normal curvatures of the shell along the parallel where bulging takes place,
and p is the radius of the parallel.

As an application of the above result we shall consider loss of stability
of a closed spherical shell of radius R, In this case,

R, =R, R,=R

The minimum value of p is obtained for g=R, i.e., when formation of dents

takes place along the equator. The corresponding formula for the critical
pressure is

2E»?

2
=~ Via—R3

P

This value equals %, of the corresponding value for shallow shells.

Remark. According to data obtained from experiments carried out
with spherical segments and described in the book by A.S. Vol'mir,*
bulging under external pressure commences at the edge of the segment.
It is reasonable to assume that this is accompanied by loss of stability,
as described in the present section.

5. Loss of stability of shells of rotation
subjected to torsion

A shell of rotation subjected to the action of a turning moment applied
at its edge may lose its stability with formation of bulging regions inclined
to the meridian (Figure 8). Let us find the value of a torque causing loss
of stability in such a case.

* Vol'mir, A.S. Gibkie plastinki i obolochki (Flexible Plates and Shells).— Gostekhizdat. 1956.




Approximating the deformed shell surface to an isometric trans-
formation of its original shape, we shall use the same considerations as
in paragraph 2 for the case of internal pressure. In this case there occurs
a certain twist of the shell, through an angle :, as evidenced by the bulging
regions inclined to the meridian. Let us
evaluate the magnitude of this angle.

We take any point Aon the shell surface
situated outside the zone of bulging and in its
vicinity. Let us find the displacement of this
point along the parallel, caused by the deforma-
tion in question. Consider a perpendicular
drawn from point A to the parallel 7, along

FIGURE 8. which the centers of bulging regions are
situated, and let P denote the foot of this
perpendicular. As in paragraph 2, we introduce a system of rectilinear
coordinates taking point P as the origin, the tangent plane at P to be the
xy plane, and directing the x -axis along the meridian of the surface.

Let 7 be the displacement of point Ain which we are interested. Assum-
ing that the magnitude of % is mainly dependent only on the regions of
bulging situated in the vicinity of P, we can state:

N = 2"](’7: Yi)-
£

In the above, v(x,y) is the y component of the bending field corresponding
to the bulging region having P as its center, his the distance between
point A and the parallel y, and y; arethe coordinates of the centers of
bulging regions which are near to P,

Let us examine the function % (x, y). It can be expressed with the help
of the analytic function

in accordance with the formula
n=alVb Re{— (usind + vcosf?)—ie“’j‘;dn}.
Substituting { = a/e? in the above formula, and noting that,

w=)\m+%,

we obtain

=aVERe{_(usin3+vcos8)+E_ipm_’?}'

w? ® o

For small bulging regions |v| is large. Consequently we may consider
that

. 3 o0
1]=aﬂRe{_(usm8t’vc058)+x£_}.

w

4s



For the same section
W = \w,

and therefore,

o - usin® 4 vcosd ie’®
n =@ YBRe (- tainbtocont 4 i

Let us make a transition from the coordinates u, vto x, y. We have,
X = -~=(ucosd® —usind
V ( )

=1 (usin® ®
y T (usind 4 vcosd),

xVa+ iy Vb = (u+ iv)e® = we®,
ad+bhp=ut = |wp.

With the help of the above relations, the expression for 7 can be
transformed as under

2% Vb os 28 — (3xy?d Va + x’aVa) sin 28
7= 2Ma )b T (@r by ¢

Substituting this value in the expression for 3, we obtain

2ykb V5 cos 28 — (3hy,¢b Va + K%V a)sin 28
= %% )b .

@A + by,

Because of the symmetry of the bulging regions with respect to the
point A, we may omit summation with respect to the first term and take

- 3hypVa +maVa
7I=—2X’aVbsin282—y'iM-
k

(ak* + byy)

Further, as in paragraph 2, we replace summation on the right-hand
side by integration. Denoting

Ay = yp — Yi—1s
we shall have

D% Vb sin 28 I 3y Va + m%aya d
T by (ah* + by?)s

4

Introducing a new variable ¢, we obtain

V-V

__ 2Masin2e [ 341
By J U+

1]

dt.

a4l
j T+ dt =
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Therefore
= _ 4n)%a sin 28
=
Introducing in the above
a= _ST“()‘._FP")av

we obtain a final formula for 7y

~ _ 12zsin28p (M4 pYa
n= Y VR

As was to be expected, the displacement, 3, of point A4 is independent of
the distance A.

We are now in a position to determine the value of the angle of twist ..
If we denote by p the radius of the parallel 7 along which the regions of
bulging are situated, then

29 24nsin20p (A +phH o

3 p By

g ==
The work done by moment M, at bulging, is

A= Me— 247 sin 280 (A% 4 p3) oM
poy )

Let us find the shell deformation energy, U. In section 1 we derived
the following formula for the energy of shell deformation, calculated per
unit length of the boundary of bulging:

77 2E¥ahk
U= Y2 —w)’©

In the above formula, a is the angle between the plane of contact of curve
v, which is the boundary of bulging zone, and the planes to the surface;
k is the curvature of curve v; and h is the deflection within the zone of
bulging.

Referred to the system of coordinates introduced previously, the sur-
face in the vicinity of point P is defined by the equation

2= % (ax® + by?).

The curve ¢ on the surface is given by the equations
u=(+pjcose, v=@A—p}sing.
Variables u, vare related to x, ¥ by the formulas

= L
VE

1
VE

X (ucos® —usind),

(usin® 4 vcos d).
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For small bulging regions we may consider that

where k is the curvature of curve y, and k, is the normal curvature of
the original surface in the 1 direction. A general expression for the normal
curvature is

b adx®+ bdy?
(I dxt +dyt *

Substituting in the above the values

X = 1%{()\ 4 p)cosgpcos® — (A — p) singsin §),
a
1

= ﬁ[()\—i—p)cosqasin&—f—(l—p)sinq:cosf)}.

we obtain the normal curvature of the surface in the y direction

b o= ax’’ -+ by’-‘
n x'z—}—y" ’

differentiation being carried out with respect to the variable ¢.
In the case of a small bulging region, the curvature of y may be
evaluated with the help of its projection on the xy plane. We obtain

B Xy —yx]
g

An element of arc of curve ~ is givan hv
ds = (x* + y'")' Ide.

Let us evaluate the integral

2r

Sa’k ds = § (x4 by”y: de

Iy —yx' 7%
1

We have

[ 1
" e % = e (A3 —
[x"y —y"x"| Ve 0w,

ax™ + byt = (A + p?) sin® ¢ + (A — )3 cos?e.

Substituting the above values in the expression under the integral sign,
we obtain

fa’k ds = ﬁ@_’ (A - pt - 4A38),
¥
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The full energy of deformation is

A Ude — 258 2Vab 4\ a2
U_5Uds1_——~—]/,l,2(l_vz) 2V 00 4t 005,

Substituting in the above
h=(#—u%o,

we obtain

U= 2BV Gy g i)
12(1 —v3)

The energy of deformation for all the n regions of bulging is

From the condition of equilibrium of the shell

d
2 (WU—2)=0

we obtain an expression for the moment M which causes loss of stability
of the shell

2E2n V ab (e

247 sin 28 (A2 4+ pH M =0
VIZ{—»2 '

+ pt A+ A% n— 5y

Noting that

nlAy = 2mp,
we obtain
TpER Y ab A a oM
Viza __“2)(1 + 2:%) — 3sin 28eM =0,
where
!
e = )":_'P.’_

The least value of M is obtained for e=% and $=45, This value is
evaluated with the help of the formula

_ np2EB Y ab
T VRA—W'

or,

ZEB‘I
M = ——_—KP———:—_.
V12 (1I—»VRR,s
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In the above, R, and R, are the principal radii of curvature along the
parallel where bulging takes place, and p is the radius of the parallel.

In conclusion let us note that loss of stability under the action of a
twisting moment M is accompanied by formation of strongly elongated
dents (e =Y,)inclined to the meridian at an angle of & = 45°,

§4. POSTCRITICAL DEFORMATIONS OF SHELLS OF
POSITIVE GAUSSIAN CURVATURE SUBJECTED TO
EXTERNAL PRESSURE. INFLUENCE OF INITIAL
DEFLECTION ON STABILITY OF SHELLS

The subject of postcritical deformations of shells of positive Gaussian
curvature subjected to external pressure or to the action of a concentrated
load was studied by the author in /2/, The present study differs in that
it offers a more exact expression for the value of the elastic deformation
energy. Results obtained are used for investigating the influence of initial
shell deflection on its stability. The value of the working load is de-
termined for shells subjected to external pressure.

1. The simplest postcritical deformation

In the study carried out in /2/ of postcritical deformations of shells of
positive Gaussian curvature rigidly fixed at the edges, we approximated
the deformed shell surface by a mirror image bulging. Such an assumption
was based on the fact that internal deformations of the shell middle sur-

)

armal S
face are a A s T e USRI

must be considered, to some approximation, as a geometric bending. By
identifying the shell postcritical deformation with an isometric transforma-
tion we have arrived, through purely geometric considerations, at the
conclusion that deformation of the shell surface must be close enough to

a corresponding shape of a mirror image bulging.

The decisive criterion in the above derivation was the assumption that
deformation of the shell middle surface constitutes a geometric bending,
and the further assumption that the shell is rigidly fixed at the edges. In
reality, the above conditions are only partly satisfied, especially when
we speak of a rigidly fixed surface edge. Although rigidity of a fixed edge
may not be absolute, in the case of an elastic shell the significance of a
rigidly fixed edge decreases as we move further away from the edge and,
hence, its force as an argument of proof is lost in the reality of a practical
case,

The above consideration limits application of the result arrived at in
{2/, regarding the approximation of postcritical deformation by a mirror
image bulging, to the case when the region of bulging encompasses the
greater part of the shell and the rigidly fixed shell edge is near to the
boundary of this region.

In the case of a shell where the above conditions are not satisfied,
namely, the rigidity of the fixed edge is not great enough or, the size of
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the bulging region is small compared to the dimensions of the shell, thus
violating the stipulation regarding the nearness of the built-in edge, we
sihall approximate the shape of the shell by a general isometrictransforma-
tion.

We shall name the case of postcritical deformation of a shell of positive
Gaussian curvature, as the simplest, if it can be satisfactorily approximated
by a mirror image bulging. Where such an approximation is not possible,
we shall name the case as general. Study /2/ discusses the simplest cases
of posteritical deformations of a shell of positive Gaussian curvature when
subjectec to a uniform external pressure or to the action of a concentrated
load. Presently we wish to deal with this question again, in connection
with the more exact expression for shell deformation energy in the zone of
strong local bending on the boundary of bulging /1/.

As always, we split the energy of elastic deformation of the shell into
two parts, U, and Ur. Uy is the energy of elastic deformation in the zone
of strong local bending along the ribs, and Ur is the energy of bending
across the main surface of the shell,

The value of energy Ur, per unit area of shellsurface, is determined
usirg the formula

_ E3s
Urp= =55 (R + k%4 2uk k),

where k, and k, are the principal shell curvatures; § is the shell thickness;
E the modulus of elasticity; and », Poisson's ratio.

The energy of deformation in the zone of strong local bending along the
ribs of the surface, which come into being in the process of postcritical
deformation, was evaluated in /2/, and per unit length of a rib is given
by the formula

U, = cE¥/a gl

In the above formula, « is the angle between the plane of contact of the
rib and the tangent planes of the shell surface; % is the rib curvature; &,
the shell thickness; and the constant ¢= 0.2, A more exact expression
for the energy of deformation in the zone of strong local bending was
derived in /1/, It differs from the expression given above by the quantity

7 Eta 1 kit ke
e S A

where 1/R is the normal curvature of the original surface in a direction
perpendicular totherib, and &, and %k, are the normal curvatures of the
deformed surface in the same direction, for the inner and outer semi-
regions of the rib respectively. Thus, the new expression for the energy
of deformation in the zone of strong local bending, and per unit length of a
rib, is as follows:

T — oEsliglapils , _E¥a 1 kx+ke)
U, = B8kl 4 2o (g 2k

Let us evaluate the energy of postcritical deformation in the simplest
case, assuming that the zone of bulging is known to be small. In /2/, the
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following expressions were derived for the value of the energy:

Uy = ncE (20)%87* (ky + ky),

TAEY (k2 K2 2uk,ky),

U = —————
P sa =) Ve,

where 2k is the deflection of the shell at the center of bulging, all other
quantities retaining their previous meanings, Taking into account the
correction in the value of U,, the corresponding difference in the value
of U, will be

__Ewm 1, kitk,
A”r—m:‘.mf“(—ﬁ ) g
1

Let us evaluate this quantity.
First of all we note that k, and k&, are equal in their absolute values
but differ in sign. Therefore,

Ey ads
AUr=—sa—mJ) R
T

The original surface is defined by the equation

2= 3 (ke + k),

and the zone of bulging is
I?(klx’ + k™) < h.
It is bounded by an ellipse with semiaxes

% %
=V

a= o
It is convenient to define this ellipse in parametric form,

x=acost, y=bsint.
We have

a2 21+ 28 = (Ryt)? + (B
The angular coefficients of the normal to the boundary of bulging
%-(k,x’ + kyyt) =h

are equal to kyx and k. Itfollowsthatthe normal curvature of the surface in
a direction perpendicular to the boundary of bulging is

1 (ko (kay)t

R =R @t gy t R (R + (ko
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Let us now find an expression for AU,, making use of the parametric
representation of the ellipse given above. We have,

_ (4R

a 2 2
ds = m (klx’ + kgy’) ds.

|

Substituting in the above
X = Vi—fcos t, y= Vi—hsint
2

and

_ sin?¢ | cos®t
ds® = 2h( kl —+ T)dﬂ,

we obtain

2h
Vi

ELp (K2 cost L + k2 sin? £) dt.

Therefore,

ThE® k: + k;

Mi=—30=w Vem -

Comparing this quantity with the energy of bending across the original
surface

= TREY k2 Oukb):
UF 3(1—92) Vk—lk; (k1+kz+ l"‘kl 2)1

when p=0, they differ in sign only.

We assume that a more detailed investigation regarding the value of AU,,
must bring about a similar conclusion (Ur =—AU,) in the general case as
well, i.e., for p-H0. With due regard to this fact, we shall assume in
future that Ur = —AU,, and will use the following expression for the full
energy of deformation

U = cE (2h)23%2 (ky + k,).

2. Investigation of postcritical deformations
for uniform external pressure and for a
concentrated load — the simplest case

In accordance with the general remark made in paragraph 1, we shall

discuss now the case when the greater part of the shell is subjected
to posteritical deformations, the edge of the shell being rigidly fixed.
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Under such conditions we may regard the postcritical deformation of the
shell as being close to the corresponding shape of mirror image bulging.
We shall consider first the deformation of the shell under the action of
a concentrated load P, acting normally to the shell surface. Denoting the
deflection of the shell at the point of application of the force by 21, we
obtain the following expression for the energy of elastic deformation:

U = wcE (2h)"1%1 (k) + k).
The work done by force P equals
A =2hP,

The shell equilibrium condition is characterized by the stationary value
of the expression U— A4, i.e,,

dU—A)=0.

From the above expression we deduce the relationship between the force P
acting on the shell and the deflection, 2k, caused by it,

P = 2 xcE VTR (ky + ky),

or,
P = 3rcES*hH V38,

where Hdenotes the mean curvature of the shell surface at the point of
application of the force.

This formula shows that with the increase of deflection (24), the force P
also increases. This indicates stability of the states of elastic equilibrium
when the shell is acted upon by a concentrated load.

It is obvious that application of the above formula is limited by elastic
deformations of the shell, i.e., the maximum stresses, conditioned by the
deformation in gquestion, must not exceed the elastic limit of the material.

It was shown in /2/ that in the case of the simplest postcritical deforma-
tion maximum stress due to bending on the boundary of the bulging zone is
determined with the help of the formula

o= c'E@2n)'1n8'"n V'K,

where K is the Gaussian curvature of the surface (K = kk,), is a constant
21, and all other quantities retain their previous meanings. It follows,
therefore, that application of the above result is limited to such deflections
2h, for which

CEVIR N YK < o,
where o, is the temporary resistance of the material,

From the above it is possible to determine the force P, which is certain
to produce plastic deformations on the boundary of bulging

_3nc H
P,= 7 VR Oy
In particular, for a spherical shell
P, = -aé‘—cB'a..
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It is interesting to note that this force does not depend on the radius of
the shell.

Let us investigate now the case when the shell is loaded by a uniform
external pressure p. The work done by the external load is

21:/l’p / 2 /

From the shell equilibrium condition
diU—A)=

we obtain the following value for the pressure, p, supported by the shell
when bulging rise is 2h:

p=XEHVR 2= L

From this formula we see that load p, supported by the shell, decreases
as the deflection (2n) increases. This indicates instability of postcritical
deformations under uniform loading.

In this case transition to postcritical deformations is effected in an
accentuated fashion, Postcritical deformation is being brought to a stop
either by the edge of the shell, or by the appearance of plastic deformations
on the boundary of bulging. The reasons for stoppage of deformation in
the second case, are explained more fully in /1, supplement 1/,

Let us assume that postcritical deformation is brought to a stop by the
shell edge against which, ultimately, the region of bulging rests. In such
a case the quantity p;,, which is the lowest value of the load supported by
the shell, is determined with the help of the maximum allowable deflection,
and consequently, by the shell dimensions.

In order to clarify ideas, let us assume that the shell is reinforced by
rigid elements running along the lines of curvature of the surface. Such
elements divide the shell into rectangular panels with sides a and 4. It
is reasonable to inquire what the spacing of the reinforcing elements should
be in order that the value of the load supported by the shell should not be
less than a given quantity p..

For the solution of the above problem we determine first the value of
the maximum allowable deformation, 2k, using the condition

L)
Var'

We then find the corresponding values of a and b:

=3EHV K=

or

_ 3cEH Vra'h

Pt _
b= XEH Vs
Py '
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It is evident that when using the above result, it is not possible to
assign too great valuss to p; for, in such a case, the corresponding
calculated values of a and b would be too small., This would mean that the
deformations in question, though they may embrace the entire panel, could
not be considered as substantial, in the sense required by the theory.

In order to present the above remark in a more concrete form, let us
note that when k, and k, are of the samec order, the theory imposes the
observance of the condition

2h
'a— 2 1 /lJ 2/.
In the case under consideration this would mean that

3cEH Viw
— a2k

Let us find the maximum dimensions of the panel a, ¥ by stipulating that
the postcritical deformation stays elastic up to the panel boundary. The
consequent maximum deformation 24 then satisfies the condition

CEVIRYE = o,

Substituting the above value of 2k into the expressions for a and b, we
obtain

%n

T V'

%p

b= —
CEX %,y V Ry

Let us assume that postcritical deformation has been brought to a stop
because of the appearance of plastic deformations on the boundary of
bulging. We shall evaluate the minimum load supported by the shell in
such a case. The deflection, corresponding to such a load, is obtained
from the condition

CEV2RBYK = s,

Substituting the above in the formula for p, we obtain
J(E s
p, = 3¢cc (T) EHK®S.

Application of the above formula is limited by two conditions. First,
this method can only be applied if the deformation at the moment when
plastic. deformation appears on the bulging boundary is substantial. This
means that the quantity 2k, determined with the help of condition

CEV 280V K=o,
must satisfy the inequality
2h
N >> l»
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or, what amounts to the same thing,

cl! >
cEv VK > 1.

Further, with the appearance of plastic deformations on the bulging
boundary, the postcritical deformation must embrace a substantial portion
of the shell. This means that the linear dimensions a and b of the panel
must be of the same order as the quantities

GB CB

—, b, = =,
CEMy VB Y CEVIR Vi

a, =

3. Influence of initial deflection of the
shell on its stability. Working load

Experience shows that a convex shell subjected to external pressure
loses its stability and commences to bulge at a pressure which is usually
less than the critical pressure, and its value is given by the formula

2E B
P=Vsa—wRR:
The basic reason for such a lowering in the value of the critical pressure
is the imperfectness of shape of the actual shell, or, stated otherwise,
initial deflection. Experiments carried out with spherical segments
prepared to perfect shape substantiate the theoretical value of the critical
pressure, There is no reason, therefore, to doubt the validity of the
critical pressure formula and no need to attempt to improve it.

The fact that actual critical pressure for a working shell having an
initial deflection may possibly be much less than the theoretical, accounts
for serious difficulties in shell design, for suchavalue cannotbe accepted
as the working pressure. A natural way out of such a situation would be
to accept as working load the value of the lower critical load (see paragraph
2). Such a load is conditioned by substantial shell deformations and,
therefore, is less sensible to the imperfectness of shape of the shell. If
we accept the lower critical load as the working load, then loss of stability
of the shell is fully excluded, since the load supported by the shell at post-
critical deformation is greater than the lower critical load.

-The above-mentioned solution of the working load problem is simple and
safe. However, it cannot be accepted because of the very low value of the
lower critical load. Let us discuss it, taking as an example a shell having
the shape of a shallow spherical segment and subjected to external pressure.
For such a shell the value of the upper critical pressure is determined
with the help of formula

_ 2F
Pe=50—mRs’

where R is the radius of curvature of the shell, and 3 is the thickness. The
lower critical pressure, p,, is given by

e 5V E
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where h is the height of the segment, and ¢ is a constant =~0.2, Hence,

%:— = 0.5]/-2%.

We note that even at #=83,p,/p, ~0.1, i.e., the lower critical value equals
0.1 of the upper,

An acceptable solution to the working load problem would be to define
such a load, as the load at which loss of stability occurs when initial
deflection is taken into account. Presently, we shall attempt to evaluate
such a load for the case of a shallow shell of positive Gaussian curvature
when subjected to external pressure.

In paragraph 2 we derived the following formula for the value of a load
supported by a shell when the bulging rise equals 2h:

p=3EH VR 5.

Here, K is the Gaussian and H the mean curvature of the shell. Itis
natural to assume that if the initial shell deflection is in conformity with
the shape of bulging, such a shell will lose its stability when subjected to
a pressure given by the above formula. We suggest, therefore, that the
critical pressure be evaluated when initial deflection equals 24, using
the formula

p=3EHVEn Y 5.

and to consider same as the working pressure,

It should be noted that the derivation of formula (*) was based on the
assumption that the parameter 82k is sufficiently small. It follows, there-
fore, that its application should be limited to such cases when there is a
significant initial deflection.

For a spherical shell, formula (*) is reduced to

p= &E(%—)’]/%: RE .

Below, we present a graph (Figure 9), showing the relationship between
the nondimensional coefficient % and the initial deflection 24/8.

This graph shows how doubtful it is to invest in a high degree of shell
workmanship, when reliance is placed on the value of the critical pressure
which is close to the theoretical.

A
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FIGURE 9.
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SUPPLEMENT

L.OSS OF STABILITY OF THREE-LAYER SHELLS

The results we have obtained of stability of shells under various modes
of loading may be applied to the so-called three-layer shells. A three-
layer shell consists of thin exterior layers prepared from materials having
high mechanical characteristics, and a comparatively thick layer of the
filler made of a weak material. Similarly to the case of ordinary shells,
the energy of deformation at bulging of a three-layer shell is concentrated,
in the main, at the boundary of the bulging zone and consists of the energy
of deformation of the outer layers and the energy of deformation of the
filler.

Denoting by a4 and v the displacements, under deformation, of points of
the shell surface in the tangent plane and along the normal respectively,
we obtain the following expression for the energy of deformation of the
outer layers, per unit length of the boundary of bulging, y:

— ¥E w3 2
U,=1_v,§(l’l"2_+:—,)ds,

where 3 is the thickness of the outer layers; p, the radius of curvature of
1; E, the modulus of elasticity; and v, Poisson's ratio. Integration is
performed along the neighborhood of the bulging boundary, r.

In order to obtain the energy of deformation of the inner layer (the filler),
we make the assumption that deformations of the outer layers are identical
(Figure 10). As a result of these deformations, the inner layer is subjected
to shear deformations, defined by the derivative v, and energy of deforma-
tion, per unit volume of the filler, will be

_Gu_"

2 1
where G is the shear modulus of the filler. The corresponding energy of
deformation of the filler, per unit length of the bulging boundary, will be

U, = %’ S v'tds,

where t is the thickness of the inner layer.
Consequently, the full energy of deformation, per unit length of a
three-layer shell, will be




FIGURE 10.

Further, as in the case of ordinary shells considered in section 1, we
standardize the variables u, v. s, assuming

’

=L, =%, 3=
Tepad' T a7
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B~
-

where a is the angle between the plane of contact to curve ¢ and the surface
tangent planes, and

e

4 _ .
12p%2 "

€

As a result, we obtain the following expression for the energy of deformation:

- -

- — Ex*l2ablep " [ e Gtatpe 7 ~
U, 4+ U, = R —w ). @ +@ds +—5— S.u’ds.

Limiting ourselves to the case of such shells and their deformations for
which the parameter &5 is small, we change the limits of integration to
+ . We then obtain

5 L3 —1 'y ~
U,+0,= % S;(v'z + ) ds - S Sﬁv’ ds.
For simplification of print, we shall omit the bars above the variables
4, v, and s,
We shall determine the shape of the shell at bulging in the zone of
strong local bending with the help of the condition of minimum energy
under a given general deformation

L
h=—§Tl——2,l‘V8paj‘ v ds

(see section 1), Our problem is therefore reduced to that of minimizing
the functional

Ug + Ui
when
h = const.
We have,
Gtk ([ s ds = tGah,
1844
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It follows that in the case of a three-layer shell, the functional
U,+U;

differs from the corresponding functional for an ordinary shell by terms
which are independent of the variation functions s, v. This means that the
functional under consideration has stationary values for the same values
of as in the corresponding problem in section 1.

Making use of the result obtained in section 1, we obtain the following
expression for energy of deformation of a three-layer shell:

2E¥%ach

U3+Ui= Vﬁ(l—\")?

+ tGah.

In order to obtain the full energy of deformation of the shell, we must
integrate the above expression along the arc of curve 1, bounding the zone
of bulging.

The first term of the expression U,+ U, was integrated in section 1.
Making use of the results obtained there, we obtain

+ 4nER
§ Ot =2
T

where R, and R, are the main radii of curvature at the center of bulging.
Let us now evaluate

Sl_] ;dsy.
T

We have (see section 1)

@ = Pkm
where &, is the normal curvature of shell surface in the y direction.

VRiR,
A (Rysin? g+ Rycost ¢)'/
P
‘"~ Rysin® ¢ 4 Rycost¢’
dsy = ) (R, sin*¢ 4 R, cost¢)/rde,
At (R sin? ¢ 4 Rqcosty) dy
VRiR, ’

L
f

ads, =

It follows that,

- Gt (R, + Re)
SU,.azs1 = ohtSads, = AL e,
h 1

Therefore, the full energy of deformation of the shell is equal to

8rEdshA =Gt (R4 Rs) e

U= — — L
V21— VRiRs VRiRs

The work done by the external pressure, p, equals

A =rnpV/ RRM.
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From the shell equilibrium condition at bulging,
dU—A4)=0,
where the parameter h\! is to vary, we obtain the value of the pressure

supported by the shell at bulging, i.e., the critical pressure

_ 4E3 Gt (R, + Ry)
- Vg(l-—v’)RlR’ RiRy !

p

where R, and R, are the principal radii of curvature of the shell; 3, the
thickness of the outer layers; t, the thickness of the inner layer;, E,
the modulus of elasticity, and v, Poisson's ratio of the outer layers,
respectively;, and G, the shear modulus of the filler.

The formula for p can also be presented in the following form:

4ERK
=V = + 2GtH,

where K is the Gaussian, and H the mean curvature of the shell at the
center of bulging.
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